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Every metric measures the predicted and the gold sentences similarity. 
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15K+ scientific articles with revisions,

metadata and peer reviews 

 3.7 M aligned sentences and 5.2M edits
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Results are close, even the control approach (CopyInput)
performs best with two metrics
The task is hard to evaluate automatically (a sentence can
have several valid revisions)
Promising directions:

Aggregation of metrics based on the improvement between
predicted and gold sentences (grammaticality, readability, …)
Multiple ground truth revisions, either produced manually  
or generated automatically

5.2M of individual edits distributed in 3.7M of edited sentences

Table 1: Distribution of the quantity of
edits per article and their length

Table 2: Distribution of edits‘
intention

Figure : Evolution of the position of
edited text per intention and revision depth
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15 646 different articles 
(3.5 versions per article
on average)
36 733 pairs of versions 29 conferences

Domains : machine learning (ICLR,
ICML, NeurIPS), robotics (RSS, CoRL),

NLP (ACL) and computer vision (ECCV)
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Nevertheless, challenges exist for
developing deep learning-based models
to predict mutational effects on protein-
protein binding. 
The major challenge is the scarcity of
experimental data — only a few
thousands of protein mutations
annotated with the change in binding
affinity are publicly available (Geng et
al., 2019b). This hinders supervised
learning as the insufficiency of training
data tends to cause over-fitting.

However, developing deep learning-
based models to predict mutational
effects on protein-protein binding is
challenging due to the scarcity of
experimental data.
Only a few thousand protein
mutations, annotated with changes
in binding affinity, are publicly
available (Geng et al., 2019b), making
supervised learning challenging due
to the potential for overfitting with
insufficient training data.
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